High skill in low-frequency climate response through fluctuation dissipation theorems despite structural instability.
نویسندگان
چکیده
Climate change science focuses on predicting the coarse-grained, planetary-scale, longtime changes in the climate system due to either changes in external forcing or internal variability, such as the impact of increased carbon dioxide. The predictions of climate change science are carried out through comprehensive, computational atmospheric, and oceanic simulation models, which necessarily parameterize physical features such as clouds, sea ice cover, etc. Recently, it has been suggested that there is irreducible imprecision in such climate models that manifests itself as structural instability in climate statistics and which can significantly hamper the skill of computer models for climate change. A systematic approach to deal with this irreducible imprecision is advocated through algorithms based on the Fluctuation Dissipation Theorem (FDT). There are important practical and computational advantages for climate change science when a skillful FDT algorithm is established. The FDT response operator can be utilized directly for multiple climate change scenarios, multiple changes in forcing, and other parameters, such as damping and inverse modelling directly without the need of running the complex climate model in each individual case. The high skill of FDT in predicting climate change, despite structural instability, is developed in an unambiguous fashion using mathematical theory as guidelines in three different test models: a generic class of analytical models mimicking the dynamical core of the computer climate models, reduced stochastic models for low-frequency variability, and models with a significant new type of irreducible imprecision involving many fast, unstable modes.
منابع مشابه
An Exploration of Multivariate Fluctuation Dissipation Operators and Their Response to Sea Surface Temperature Perturbations
The fluctuation–dissipation theorem (FDT) has been proposed as a method of calculating the mean response of the atmosphere to small external perturbations. This paper explores the application of the theory under time and space constraints that approximate realistic conditions. To date, most applications of the theory in the climate context used univariate, low-dimensional-state representations ...
متن کاملA Test Model for Fluctuation-Dissipation Theorems with Time Periodic Statistics
The recently developed time-periodic fluctuation-dissipation theorem (FDT) provides a very convenient way of addressing the climate change of atmospheric systems with seasonal cycle by utilizing statistics of the present climate. A triad nonlinear stochastic model with exactly solvable first and second order statistics is introduced here as an unambiguous test model for FDT in a timeperiodic se...
متن کاملTest Model for Fluctuation-Dissipation Theorems with Time Periodic Statistics
The recently developed time-periodic fluctuation-dissipation theorem (FDT) provides a very convenient way of addressing the climate change of atmospheric systems with seasonal cycle by utilizing statistics of the present climate. A triad nonlinear stochastic model with exactly solvable first and second order statistics is introduced here as an unambiguous test model for FDT in a timeperiodic se...
متن کاملCommon Origin of Quantum Regression and Quantum Fluctuation Dissipation Theorems
It is shown that the quantum fluctuation dissipation theorem can be considered as a mathematical formulation in the spectral representation of Onsager hypothesis on the regression of fluctuations in physical systems. It is shown that the quantum fluctuation dissipation theorem can be generalized to an arbitrary stationary state. 1 Introduction. Under thermal equilibrium conditions the behavior ...
متن کاملBlended Response Algorithms for Linear Fluctuation-Dissipation for Complex Nonlinear Dynamical Systems
In a recent paper the authors developed and tested two novel computational algorithms for predicting the mean linear response of a chaotic dynamical system to small changes in external forcing via the fluctuation-dissipation theorem (FDT): the short-time FDT (ST-FDT), and the hybrid Axiom A FDT (hA-FDT). Unlike the earlier work in developing fluctuation-dissipation theorem-type computational st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 2 شماره
صفحات -
تاریخ انتشار 2010